ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design?

نویسندگان

  • Azaj Ansari
  • Gopalan Rajaraman
چکیده

There is a growing interest in probing the mechanism of catalytic transformations effected by non-heme iron-oxo complexes as these reactions set a platform for understanding the relevant enzymatic reactions. The ortho-hydroxylation of aromatic compounds is one such reaction catalysed by iron-oxo complexes. Experimentally [Fe(II)(BPMEN)(CH3CN)2](2+) (1) and [Fe(II)(TPA)(CH3CN)2](2+) (2) (where TPA = tris(2-pyridylmethyl)amine and BPMEN = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine) complexes containing amino pyridine ligands along with H2O2 are employed to carry out these transformations where complex 1 is found to be more reactive than complex 2. Herein, using density functional methods employing B3LYP and dispersion corrected B3LYP (B3LYP-D) functionals, we have explored the mechanism of this reaction to reason out the importance of ligand design in fine-tuning the reactivity of such catalytic transformations. Dispersion corrected B3LYP is found to be superior to B3LYP in predicting the correct ground state of these species and also yields lower barrier heights than the B3LYP functional. Starting the reaction from the Fe(III)–OOH species, both homolytic and heterolytic cleavage of the O···O bond is explored leading to the formation of the transient Fe(IV)=O and Fe(V)=O species. For both the ligand systems, heterolytic cleavage was energetically preferable and our calculations suggest that both the reactions are catalyzed by an elusive high-valent Fe(V)=O species. The Fe(V)=O species undergoes the reaction via an electrophilic attack of the benzene ring to effect the ortho-hydroxylation reaction. The reactivity pattern observed for 1 and 2 are reflected in the computed barrier heights for the ortho-hydroxylation reaction. Electronic structure analysis reveals that the difference in reactivity between the ligand architectures described in complex 1 and 2 arise due to orientation of the pyridine ring(s) parallel or perpendicular to the Fe(V)=O bond. The parallel orientation of the pyridine ring is found to mix with the (πFe(dyz)–O(py))* orbital of the Fe-oxo bond leading to a reduction in the electrophilicity of the ferryl oxygen atom. Our calculations highlight the importance of ligand design in this chemistry and suggest that this concept can be used to (i) stabilize high-valent intermediates which can be trapped and thoroughly characterized (ii) enhance the reactivity and efficiency of the oxidants by increasing the electrophilicity of the ferryl oxygen containing FeVO species. Our computed results are in general agreement with the experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ortho-hydroxylation of benzoic acids with hydrogen peroxide at a non-heme iron center.

The iron-assisted hydroxylation of benzoic acid to salicylic acid by 1/H2O2 has been achieved in good yield under mild conditions (where is [Fe(II)(BPMEN)(CH3CN)2](ClO4)2 and BPMEN =N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine); the product of this reaction is a novel mononuclear iron(III) complex with a chelating salicylate.

متن کامل

Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish...

متن کامل

How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?

The catalytic activity of high-valent iron-oxo active species of heme enzymes is known to be dependent on the nature of the axial ligand trans to the iron-oxo group. In a similar fashion, experimental studies on iron-oxo porphyrin biomimetic systems have shown a significant axial ligand effect on ethylbenzene hydroxylation, with an axial acetonitrile ligand leading to phenyl hydroxylation produ...

متن کامل

Hydrogen Bond Control of Active Oxidizing Species in Manganese Porphyrin Hydroxylation Catalysts

Some meso-tetra aryl porphyrinato manganese (III) acetate or chloride complexes including meso-tetraphenyl porphyrinato manganese (III) chloride (TPPMnCl), meso-tetrakis(2,3-dimethoxyphenyl)porphyrinato manganese(III) acetate, (T(2,3-OMeP)PMnOAc) and meso-tetrakis(pentaflourophenyl)porphyrinato manganese (III) acetate (TPFPPMnOAc) were synthesized. These porphyrins were used as catalyst in the ...

متن کامل

Catalytic hydroxylation of benzene and toluene by an iron complex bearing a chelating di-pyridyl-di-NHC ligand.

This work reports on iron-catalysed hydroxylation of benzene and toluene using aqueous H2O2. While benzene is hydroxylated with a high selectivity to phenol, toluene is hydroxylated to cresols with a high selectivity for the ortho and para-position. An inverse KIE indicates the presence of a high valent Fe=O species during catalysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 28  شماره 

صفحات  -

تاریخ انتشار 2014